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Abstract
Eigenvalues and Fourier space eigenfunctions of Mathieu’s equation are
found in the short wavelength limit using a uniform approximation (method
of comparison with a ‘known’ equation having the same classical turning-
point structure) applied to the Raman–Nath (RN) equation. The uniform
approximation used here relies upon the fact that by passing into Fourier space
the Mathieu equation can be mapped onto the simpler problem of a double-well
potential. The resulting eigenfunctions (Bloch waves), which are uniformly
valid for all angles, are then used to describe the semiclassical scattering of
waves by potentials varying sinusoidally in one direction. In such situations,
for instance in the diffraction of atoms by gratings made of light, it is common
to make the RN approximation which ignores the motion of the atoms inside
the grating. When using the eigenfunctions no such approximation is made so
that the dynamical diffraction regime (long interaction time) can be explored.

PACS numbers: 4225F, 0230G. 0375B, 3280L

1. Introduction

Consider a diffraction experiment in two dimensions, as depicted in figure 1. A plane wave
exp(ikz) propagates freely in the ẑ (longitudinal) direction and is incident normally upon a
medium with a refractive index which varies weakly in the x̂ (transverse) direction

n(x) = n0 + n1 cos 2Kx (n1 � n0). (1)

As the refractive index depends only on x, the wavefunction inside the medium separates,
	(z, x) = φ(z)ψ(x), with φ(z) being trivially given by

φ(z) = exp

(
iz
√
k2n2

0 − κ

)
(2)
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Figure 1. A typical experimental set-up used in the investigation of atomic diffraction.

with κ a separation constant proportional to the transverse energy of the wave inside the
medium. The transverse behaviour is governed by Mathieu’s equation (see Abramowitz and
Stegun (1964))

∂2ψ(x)

∂x2
+
(
κ + 2k2n0n1 cos 2Kx

)
ψ(x) = 0. (3)

More generally, Mathieu’s equation is obtained whenever the three-dimensional Helmholtz
wave equation is separated in elliptical coordinates, useful for, say, scattering from elliptical
boundaries. This paper is concerned with the short wavelength (semiclassical) regime for which
the parameter 2k2n0n1/K

2 is very large. One motivation is that the resulting asymptotics are
known to describe the emergence of interesting classical features such as caustics (singularities
of the geometric ray theory) which come to dominate the wavefield as the wavelength is reduced
to zero. The caustic structure becomes ever more intricate as the (longitudinal) thickness of
the medium is increased (Berry and O’Dell 1999).

Diffraction by a sinusoidal grating has been studied in the context of the diffraction of
light by ultrasound since at least 1921 (Brillouin 1921) (see Berry (1966) for a review to 1966).
More recent interest has arisen through the realization of the diffraction of beams of atoms by
beams of light (Adams et al 1994). Then n(x) = √

1 − V (x)/E, where E is the energy of the
atoms and V (x) is the potential energy due to their interaction with a standing wave of light
(Cohen-Tannoudji et al 1992, Kazantsev et al 1991)

V (x) = − �

4h̄

d2 E2
0

�2 + �2/4
cos2 Kx = −V0 cos2 Kx (4)

with E0 the magnitude of the electric field of the counter propagating laser beams which form
the standing wave, K their wavenumber and � the frequency detuning from resonance. �

is the spontaneous decay rate for the excited atom and d the atomic dipole moment for the
electronic transition being used.

The resonant nature of the atom–light interaction allows for an efficient transfer of
transverse kinetic energy to the atoms. Combined with their large mass, this means the atoms
can attain small transverse de Broglie wavelengths and so are rather good candidates to access
the semiclassical scattering regime when compared with other microscopic particles such as
neutrons or electrons.

The idealized experiment described above assumes that the standing wave laser field has
a ‘top-hat’ cross section in the longitudinal direction, switching on at z = 0, and remaining
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constant till switching off at z = Z at which point the atoms propagate undisturbed to a
detector in the farfield. One might achieve this by telescopically expanding the normally
Gaussian laser profile and physically masking the entry and exit edges to make them sharp
(diffraction limited). In this way the entry and exit into the laser can be sudden from the
point of view of the dynamics of the centre of mass of the atom, but still adiabatic from the
point of view of the rapid Rabi oscillations of the internal electronic states that generate the
potential given by equation (4), see O’Dell (1999) for more details. In any case, features such
as caustics will still be qualitatively correctly described by the simple model given here even if
experimental conditions differ considerably. This is because caustics are stable to perturbations
as guaranteed by the optical catastrophe theory (Berry 1981).

2. Dynamical diffraction and the Raman–Nath equations

The time-independent Schrödinger equation governing the passage of atoms of energy E =
h̄2k2/2m through an optical standing wave of periodicity π/K is

∂2	

∂x2
+
∂2	

∂z2
+

(
k2 +

2mV0

h̄2 cos2(Kx)

)
	 = 0. (5)

The periodic potential suggests an atomic wavefunction of the form

	(x, z) = eikz
∞∑

n=−∞
An(z)e

2inKx. (6)

An advantage of this decomposition of the wavefunction is that upon exiting the interaction
region at z = Z, the terms in equation (6) represent freely propagating diffracted waves
travelling at angles arcsin(2nK/k) to the z-axis with amplitudes An(z = Z). A detector in the
farfield will register a diffraction pattern made up of discrete beams with intensities |An(Z)|2.
The amplitudes satisfy

∑n=+∞
n=−∞ |An|2 = 1. The rest of this paper is devoted to determining

An(z).
If the initial kinetic energy of the atoms is thermal then k � K and the propagation of

the atom beam is paraxial. The paraxiality means that the evolution of An with z will be much
slower than exp(ikz) so when substituting (6) into (5) any terms containing d2An/dz2 can be
ignored. The result is an infinite series of coupled equations

i
∂An

∂ζ
− n2An +

�

2
(An+1 + 2An + An−1) = 0 (7)

where

ζ ≡ 2K2z

k
� ≡ mV0

4h̄2K2
. (8)

The parameter� is equivalent to the parameter 2k2n0n1/K
2 appearing above in equation (3)—

by letting h̄ → 0, and hence� → ∞, one obtains the classical limit. Of course, taking the limit
h̄ → 0 is a formal device. In an actual experiment the short wavelength limit is approached
by, say, making V0, the interaction between the atoms and the light, as large as possible. This
increases the depth of the wells of the sinusoidal potential which in turn means there are more
quantized transverse states. A phase transformation An → An exp(i�ζ) slightly simplifies
the equations to

i
∂An

∂ζ
− n2An +

�

2
(An+1 + An−1) = 0. (9)

These are (apart from a straightforward change of variables) the differential difference
equations introduced by Raman and Nath (1935, 1936) to describe the diffraction of light
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by ultrasound. The Raman–Nath (RN) equations are a description of dynamical diffraction,
yielding the evolution of the amplitudes of the various diffracted beams as the atom wave
passes through the light grating. In their original paper, Raman and Nath (1935) observed
that by ignoring the diagonal term, n2An, one obtains simple solutions for An in terms of
Bessel functions. This is equivalent to neglecting the transverse kinetic energy of the atoms
and the sinusoidal potential then acts only as a pure phase grating, see Berry (1966). This is
a very successful approximation for short interaction times (Sanders 1936, Gould et al 1986,
Rasel et al 1995) but dynamical diffraction requires that full account be taken of the transverse
motion.

A general property of paraxial systems is that the axial coordinate, in this case the rescaled
longitudinal distance, ζ , plays the role of time. The numerical integration of the RN equations is
relatively simple since they are first-order differential equations in ζ with only a single boundary
condition: An(ζ = 0) = δn0. However, when investigating the behaviour at long interaction
times it becomes more economic to analyse the problem in terms of the eigenfunctions of the
scattering potential, which propagate unchanged through the medium. This approach will be
adopted by seeking eigenfunctions of the RN equations (9) of the form An ≡ Bn exp(−iEζ).
Corresponding to each eigenvalueEj is an eigenfunction consisting of a ‘vector’ of amplitudes
(B

j
−∞, . . . , B

j

−2, B
j

−1, B
j

0 , B
j

1 , B
j

2 , . . . , B
j
∞), whose elements satisfy

EjBj
n = n2Bj

n − �

2

(
B

j

n+1 + B
j

n−1

)
. (10)

This equation defines the tridiagonal RN matrix Hamiltonian. For a weak potential (i.e. small
�: the quantum, non-classical limit) the RN matrix can be approximated by a 3 × 3, or for the
special case of oblique incidence near a Bragg angle, a 2 × 2 matrix, and analytical solutions
for the Bloch waves (eigenfunctions) are easy to find (Berry and O’Dell 1998). Here, however,
we are interested in the opposite limit.

For the purposes of numerical diagonalization, a guide to the minimum diffraction order,
±N , at which the RN matrix can be safely truncated for large � is given by

N =
√

2� ∝ h̄−1. (11)

This includes only those beams contained within the maximum scattering angle that can be
achieved classically (Berry 1966). Criterion (11) becomes exact as � → ∞ but at the cost of
requiring an infinite number of beams.

The ‘physical’ derivation of the stationary RN equation (10) given here is nothing more
than a Fourier analysis of Mathieu’s equation (3). Equation (10) is the recursion relation
satisfied by the Fourier coefficients of periodic solutions to Mathieu’s equation: the even and
odd Mathieu functions (Abramowitz and Stegun 1964). The eigenvalues Ej are known as the
characteristic values.

3. WKB solution of the Raman–Nath equations

In the semiclassical limit the dimensions of RN matrix defined by equation (10) are infinite and
numerical diagonalization becomes impossible. Dingle and Morgan (1967a, b) (see appendix
of Berry (1966)) and independently Yakovlev (1997), have given a WKB-type solution for
the continuized RN equations accurate for the large � limit. The idea is to capture the very
fast oscillation of the Bloch wave (see figures 3–7) with the exponential of a slowly varying
function. To this end one replaces the discrete variable n with the continuous one y

y ≡ n√
�

(12)
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so that when n → n+1, then y → y+(
√
�)−1 and the discrete amplitudes become continuous

functions of y, Bn → B(y). Defining the rescaled eigenvalue

β ≡ E

�
(13)

the stationary RN equation (10) becomes

(β − y2)B(y) + 1
2

[
B
(
y + (

√
�)−1

)
+ B

(
y − (

√
�)−1

)] = 0. (14)

Following Berry (1966), let

B(y) = eiS(y) (15)

where the suggestively named S(y) is analogous to an action. Taylor expansion of S(y +
(
√
�)−1) and S(y − (

√
�)−1) gives a differential equation of infinite order

cos

(
Si +

Siii

6
+ · · ·

)
= (y2 − β)e−i(Sii/2 +Siv/24 +···) (16)

where Sm = (
√
�)−m ∂mS/∂ym are assumed to be small quantities of order (

√
�)−m. Solving

for the first derivative one has
1√
�

∂S

∂y
= arccos

[
(y2 − β)e−i(Sii/2 +Siv/24 +···)

]
− Siii

6
− · · · . (17)

Expanding the right-hand side (rhs) gives

1√
�

∂S

∂y
= arccos [y2 − β] + i

y2 − β√
1 − (y2 − β)2

Sii

2
− Siii

6
+ i

y2 − β√
1 − (y2 − β)2

Siv

24

+
y2 − β(

1 − (y2 − β)2
)3/2

(Sii)2

8
+ · · · (18)

which can be solved for Si by iteration, yielding to the second order

∂S

∂y
≈

√
� arccos [y2 − β] − i

(y2 − β)y

1 − (y2 − β)2
. (19)

The second term on the rhs can be integrated immediately so that the equation for S can be
written as

S ≈
√
�

∫
arccos [y2 − β] dy − i

4
ln
(
1 − (y2 − β)2

)
≡

√
� S0(y, β) − i

4
ln
(
1 − (y2 − β)2

)
. (20)

Thus the continuized eigenfunctions take the form (Berry 1966)

B(y) = eiS ≈ ei
√
�
∫

arccos [y2−β] dy(
1 − (y2 − β)2

)1/4 = ei
√
� S0(y,β)(

1 − (y2 − β)2
)1/4 (21)

which resembles a WKB expression. In particular the denominator causes divergences at the
turning-points

y = ±
√
β ± 1. (22)

‘Bound’ solutions of Mathieu’s equation have energies lying between the top and bottom of
the sinusoidal wells (0 � E � V0) which translates into the bound eigenvalues occupying the
range −1 � β � 1. This means that except for the situation when β = 1, the real turning
points for the bound states are located at

y± = ±
√
β + 1. (23)
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‘Free’ states have energies above the wells. When E is sufficiently greater than V0 it is easy
to find WKB solutions of Mathieu’s equation directly in coordinate space (since they have no
classical turning-points and hence no divergences) rather than the momentum (Fourier) space
used here. Similarly, it is also simple to find eigenfunctions in coordinate space when β ≈ −1,
since the states near the very bottom of the wells are the most localized and see an essentially
harmonic potential yielding hermite polynomials as solutions. The most interesting situation
is for β lying close to +1. These are the states affected most by tunnelling between the wells
and will be examined in sections 10–19.

The remaining ‘action’ integral, giving the phase of the WKB solution (21), can be
calculated using the positive turning-point y+ = √

β + 1 as the lower limit (i.e. the zero
or reference point of the phase)

S0(y+, y, β) =
∫ y

√
β+1

arccos [y ′2 − β] dy ′

= y arccos [y2 − β] − 2
√

1 + β E

(
1

2
arccos [y2 − β]

∣∣∣∣ 2

1 + β

)
(24)

where E(φ|m) = ∫ φ

0

√
1 − m sin2 θ dθ is the incomplete elliptic integral of the second kind,

see Gradshteyn and Ryzhik (1965). This expression for the phase is valid for 0 � y �
√
β + 1.

For perpendicular incidence the phase is symmetrical about y = 0, and so only this half-range
is required. For values of y greater than

√
β + 1 the phase is purely imaginary, but with

care (24) still gives the correct answer.

4. Single and double wells in momentum space

Whilst it is useful to think of equation (21) as a WKB-type expression it does have some
unusual features due to its unorthodox derivation from a difference equation. Usually, for the
Schrödinger equation

d2ψ(q)

dq2
+
p2(q)

h̄2 ψ(q) = 0 (25)

where p(q) is the momentum, one has the approximate WKB solution (Berry and Mount
1972), valid for small h̄ as long as one is not too close to the turning-points (p(q) = 0), of

ψ±
WKB ≡ 1√

p(q)
exp

(
± i

h̄

∫ q

0
p(q ′) dq ′

)
(26)

where ± refers to right/left travelling waves. Equation (21) is actually for the momentum space
wavefunction, but to keep the analogy with the familiar coordinate space WKB solution (26)
simple, equation (21) will temporarily be treated as though it is a coordinate space expression.
Thus, terms such as ‘momentum’ will refer to functions playing an analogous role to p(q)

above. In particular, what is peculiar about solution (21) is that the ‘momentum’ function
appearing in the amplitude and phase are different. The two momenta

p1(y, β) ≡
√

1 − (
y2 − β

)2
(27)

and

p2(y, β) ≡ arccos [y2 − β] (28)

coincide for β → −1, but are quite different when β → 1. Examining figure 2 one notes
that the momentum appearing in the phase, p2, is that exhibited by a particle in a simple well.
The amplitude momentum, p1, however, corresponds to a particle in a double well—although,
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Figure 2. A series of plots showing the two momentum functions, p1 and p2, as functions of y
for different values of β. The top left has β = −0.999, each successive picture has β increasing
by 0.2 until the bottom right which has β = 1.201. It is the p1 curve that dips down to zero when
β = 1.

except for values of β > 1, the particle has enough energy to move between the two wells. It
is the classical turning-point structure that is of paramount importance (see Berry and Mount
(1972) for a review of the WKB procedure), so the different local values of the two momenta
exhibit similar behaviour when β < 1. However, as the turning-point structure of p1 changes
from two to four, at β = 1, one can expect a qualitatively different response.

This retrospective observation, that the RN equations in some sense describe a wave in a
single/double well, will be exploited to find uniform solutions in section 7.

5. The Bohr–Sommerfeld condition

For states in a well, single-valuedness of the wavefunction dictates that only certain discrete
energies are allowed. These eigenvalues/characteristic numbers ensure the integral of the
WKB phase, equation (24), from one turning-point to the other (that is, the integral across the
classically accessible part of the potential well), correctly matches the oscillating part of the
WKB wavefunction onto (asymptotically) exponentially decaying parts of the wavefunction
(that tunnel into the classically forbidden sides of the well).

The action right across the well, given by setting the upper integration limit of equation (24)
equal to −√

β + 1, is also equal to, for perpendicular incidence, twice the value found by
integrating only halfway, to the midpoint of the well at y = 0

2S0(y+, 0, β) = −4
√

1 + β E

(
1

2
arccos [−β]

∣∣∣∣ 2

1 + β

)
. (29)

The Bohr–Sommerfeld condition then states

2
√
�
∣∣S0(y+, 0, βj )

∣∣ = (
j + 1

2

)
π j = 0, 1, 2, 3 . . . . (30)

The root of this equation (which must be found numerically) for each value of j gives the βj

eigenvalues. This expression also gives the number of bound states that exist once a value for�
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has been chosen. The term ‘bound’ here refers to the coordinate space states that energetically
lie below the maxima of the sinusoidal potential. In momentum space all the states are trapped
in a well. The most energetic bound state, labelled jmax, has the value of β which is closest to
1. When � is large the eigenvalues lie very close to each other, and in particular

lim
�→∞

βjmax = 1 (31)

and since E
(
π
2

∣∣ 1
) = 1, then

lim
�→∞

jmax = 4
√
�

√
2

π
− 1

2
. (32)

Although this gives the total number of possible bound states, not all of them are necessarily
used in the superposition which gives the diffracted wavefunction. The superposition
coefficients, which establish the relative contribution of each Bloch wave to the total
wavefunction, are determined from the overlap of the initial plane wave (An(ζ = 0) = δn0)
with the Bloch waves. The overlap integral is trivial in momentum space. Each coefficient is
given by the value of the corresponding Bloch wave at y = n = 0. Thus only the even Bloch
waves are excited.

6. Real eigenvectors and normalization

Since the stationary RN equation (14) is real it is always possible to find real solutions. This
is achieved by constructing a superposition of the two independent solutions: the right and
left travelling waves of equation (26), which correctly matches the exponential decay into the
classically forbidden regions (Berry and Mount 1972). In the classically allowed region the
single well has the solution

BWKB(y, β) = N (β)(
1 − (

y2 − β
)2
)1/4 cos

(√
� S0(y+, y, β) +

π

4

)
(33)

where S0 is given by equation (24), and N (β) is a normalization factor.
Normalization of the discrete amplitudes Bn requires that

∑∞
n=−∞ |Bn|2 = 1. When

moving from a summation to the integration in the continuous variable y, care must be taken
to include a factor of

√
� which comes from the definition (12) of y, so that

∞∑
n=−∞

−→
∫ ∞

n=−∞
dn −→

√
�

∫ ∞

y=−∞
dy. (34)

And so normalizing the eigenvectors requires the evaluation of∫ ∞

−∞

∣∣∣Bj

WKB(y)

∣∣∣2 dy = 1. (35)

When � becomes large the exponential decay of the wavefunction into the sides of the well
becomes very rapid and one can ignore these contributions, so the integral is taken to be just
that between the two turning-points of the classical motion. Further, the oscillation of the
wavefunction is assumed to be very rapid (actually the normalization factor derived in this
way works well even for the ground state Bloch wave which has the shape of a Gaussian, i.e.
is non-oscillatory) in comparison to the slow variation of the square of the amplitude. And so,
without much loss of accuracy, the cos2 term can be replaced by its average value of one half.
Although the amplitude diverges at the turning-points this divergence is still integrable. Thus,
one takes √

�

2

∫ y+

y−

dy√
1 − (y2 − β)2

≈ 1

N 2
(36)



Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions 3905

which gives

N 2 ≈
√

2√
�K

( 1+β
2

) (37)

where K(m) = ∫ π/2
0 (1 − m sin2 θ)−1/2 dθ is the complete elliptic integral of the first kind

(Gradshteyn and Ryzhik 1965).

7. A uniform approximation for the Raman–Nath equation

If the total diffracted wavefunction was calculated as a sum over the WKB Bloch waves
then the diffraction pattern would contain spurious divergences at the turning-points of each
eigenfunction. This problem can be overcome using uniform approximations which give
smooth and uniformly accurate eigenfunctions. Uniform approximations are based upon the
idea that one can express the solutions to an unstudied differential equation in terms of those
of a well known, studied, differential equation provided the two share a similar transition
point (classical turning-point) structure. Conceived by Langer (1937), the uniform method
was generalized by Miller and Good (1953), Olver (1954) and Dingle (1956). A review can be
found in Berry and Mount (1972). Since the method is central to the following calculations, it
is reviewed in appendix. Somewhat non-standard, and to the best of the author’s knowledge,
novel uniform approximations for the momentum space Mathieu functions will be described
in this and the following sections.

If one were to treat Mathieu’s equation directly in coordinate space then the infinite
number of turning-points due to the periodic well structure of the potential make a semiclassical
analysis more complicated, see Berry (1971). Approximations local to one or two turning-
points (e.g. the expansions due to Sips, see Abramowitz and Stegun (1964)) must be carefully
joined together to give the complete solution. By using an imaginary coordinate the Mathieu
equation is converted to the modified Mathieu equation (Abramowitz and Stegun (1964))
which has a hyperbolic cosine potential, and so a uniform approximation for a single well
could be applied (see, for example, Ancey et al (2000) for uniform approximations to the
modified Mathieu equation in coordinate space). However, for the type of diffraction problem
treated here a uniform approximation made directly in Fourier space is more convenient for
two reasons. Firstly, if it is the farfield diffraction pattern that is required, then this is the
Fourier space description and no further transformation is required. Secondly, for the incident
plane wave initial condition considered here, the calculation of the superposition coefficient
for each eigenfunction contributing to the total wavefunction is, as described earlier, trivial.

When constructing a uniform approximation to the continuized stationary RN
equation (14) it is not obvious what ‘momentum’ (the pretence of being in coordinate space
rather than momentum space will continue to be maintained) function (i.e.p(q) = √

E − V (q)

in equation (26)) to use. The WKB-type solutions (21) continue to play an important role since
they suggest using the ‘momentum’ functions p1 and p2 of equations (27) and (28). It turns
out that, as in the WKB case, matches to the actual momentum space Mathieu eigenfunctions
are found when p1 is used for the ‘amplitude’ part of the uniform approximation and p2 for
the ‘phase’ part. The mapping function should be based upon p2, which has the structure of a
simple well. The simplest comparison equation for a well is

d2φ

dσ 2
+
(
t − σ 2

)
φ = 0. (38)

The parameter t depends on the energy. The ‘equivalent points’ needed for equation (107) are
chosen to be the turning-points. This of course immediately satisfies the requirement that the
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zeros of � and χ correspond (see appendix). Using (107), the integral across the well gives t ,
for then ∫ y+

y−

√
�p2(y, β) dy ≡ −2

√
�S0(y+, 0, β) =

∫ +
√
t

−√
t

√
t − σ 2 dσ = tπ

2
(39)

where S0 is given by equation (24). Once t , which is a function of β, is known, the mapping
function σ(y) can be found from

√
�S0(y+, y, β) =

∫ σ(y)

+
√
t

√
t − σ 2 dσ = t

2

(
arcsin

[
σ√
t

]
+

σ√
t

√
1 − σ 2

t
− π

2

)
. (40)

Clearly this step must be executed by numerical root finding for each value of y which is
required, i.e. those spaced at 1/

√
� intervals which are the angular positions of the diffracted

beams.
There are two standard forms of the parabolic cylinder equation (Abramowitz and Stegun

1964)
d2-

dg2
∓
(
g2

4
± a

)
- = 0. (41)

The well equation (38) corresponds to taking the upper signs. The simplest independent
solutions to the parabolic cylinder equations are an even and an odd power series. However,
combinations of these two power series lead to another two independent solutions, the
Whittaker functions, which for large g decay or grow exponentially. The Whittaker functions
have the correct properties to match the exponential tunnelling of the physical solution into
the sides of the well. The Whittaker solutions to the well equation (38) are D(t−1)/2(σ

√
2) and

D(t−1)/2(−σ
√

2). The standard theory for the potential well uniform approximation would
then predict the form of the Bloch wavefunction, correct for all y, to be

B(y) = ψuniform = 1

2
N 21/4

(
2e

t (β)

)t (β)/4 (dσ(y)

dy

)−1/2

D(t(β)−1)/2
(− σ(y)

√
2
)

(42)

and it is noted that for perpendicular incidence the choice of +σ or −σ makes no difference
(only even eigenvectors are excited). The prefactors ensure that this expression has the same
asymptotic behaviour when σ, y → ∞ as the WKB solution (21).

Inserting the Bohr–Sommerfeld condition (30) into the equation for t , (39) above, gives
the value of t which corresponds to the j th eigenvalue

t = 2j + 1. (43)

When the index of a Whittaker function is an integer, as here, it takes on the more familiar
form

Dj(σ
√

2) = 2−j/2Hj(σ)e
−σ 2/2 (44)

where Hj is a Hermite polynomial. However, for the higher Bloch waves (e.g. j > 20) it is
more convenient to use, for reasons of speed of computation, the Airy function approximation
to the Whittaker functions (see Abramowitz and Stegun (1964)).

8. Modifying the amplitude

The application of the uniform method to the WKB approximation to the RN equation as
given above requires some adjustment. The existence of two momentum functions means the
amplitude term of equation (42)(

dσ(y)

dy

)−1/2

=
(

t − σ 2

arccos2
[
y2 − β

]
)1/4

(45)
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does not match the WKB behaviour (see figure 2), since in that expression it is p1 that appears
in the amplitude. This disparity is removed by the substitution(

t − σ 2

arccos2
[
y2 − β

]
)1/4

−→
(

t − σ 2

1 − (
y2 − β

)2

)1/4

. (46)

The uniform approximation is formulated so that �(σ) and χ(y) approach zero together
so that the divergence inherent in the WKB solution is tamed. For the adjusted amplitude to
give sensible answers this swapping of the momentum expressions must still lead to the correct
behaviour at the turning-points. For β < 1, both p1 and p2 have the same zeros, and crucially
for the uniform approximation they go to zero in the same way, namely as the square root of
the distance from the zero.

L’Hôpital’s rule can be used to find the limiting value of the amplitude (46) at the turning-
point. After some calculation one finds

lim
y→√

1+β

[
t − σ 2

1 − (
y2 − β

)2

]
= lim

y→√
1+β

[
�

p2
1

]
= lim

y→√
1+β

[
�

p2
2

]
=
( √

t

2
√

1 + β

)2/3

. (47)

9. Comparison with the purely numerical calculation

The accuracy of the uniform method will now be illustrated through comparison with the results
of a fully numerical diagonalization (which can be taken as the ‘exact’ result). Figures 3–7
show a selection of Bloch waves with the uniform calculation shown as a solid curve, though
as before only the discrete values of y corresponding to the diffracted beams were used. The
dots are the numerical data.

Figures 8–12 give the square of the modulus of the total wavefunction (i.e. the diffraction
pattern), found by summing the Bloch waves, for a selection of depths (i.e. thicknesses of
interaction region). As mentioned at the end of section 5, the superposition coefficients in this
sum are given by the value of the particular Bloch wave at y = 0. Only the bound states were

Figure 3. A comparison of the numerical (dots) 0th Bloch wave, out of 200 bound states, of the RN
matrix (10) for � = 12 500, with its uniform approximation (solid curve). β = −0.9937. Since
the Bloch wave is symmetrical about y = 0, only the positive half is shown.
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Figure 4. A comparison of the numerical (dots) 8th Bloch wave, out of 200 bound states, of the
RN matrix (10) for � = 12 500, with its uniform approximation (solid curve). β = −0.8932.

Figure 5. A comparison of the numerical (dots) 110th Bloch wave, out of 200 bound states, of the
RN matrix (10) for � = 12 500, with its uniform approximation (solid curve). β = 0.2616.

used in both the numerical and uniform calculations, an approximation which is increasingly
accurate in the classical limit. Note that the match between the two calculations shown in
figures 8–12 is so good that the difference is for the most part hardly visible.

The intensity shown in figure 8 clearly displays (the square of) an Airy function, which
is well known to be the wavefunction associated with a fold caustic (Berry 1981). Caustics
are the foci of the diffracted wavefield—classically they diverge and hence come to dominate
the diffraction pattern in this limit. Figures 8–12 are the quantum equivalent of vertical slices
through the classical ray trajectory picture, figure 1(b), of Berry and O’Dell (1999) (the depth,
ζ , is the same classical unit denoted by x in that paper). The caustics are the envelopes of
families of rays (each ray corresponds to a classical atom) which oscillate back and forth in
the potential.

If the potential was harmonic then all the atoms would be focussed at y = 0 when



Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions 3909

Figure 6. A comparison of the numerical (dots) 152nd Bloch wave, out of 200 bound states, of the
RN matrix (10) for � = 12 500, with its uniform approximation (solid curve). β = 0.6532.

Figure 7. A comparison of the numerical (dots) 200th Bloch wave, out of 200 bound states, of the
RN matrix (10) for � = 12 500, with its uniform approximation (solid curve). β = 0.9961.

ζ = mπ (m = 0, 1, 2 . . .) and this behaviour can be seen in figure 9 for m = 1. However, the
anharmonicity of the sinusoidal potential means that the foci are imperfect and are smeared out
into cusps with fold caustic arms. With increasing depth, successive oscillations of the atoms
each introduce a new cusp which develops into a fold as it moves outwards through the pattern
with increasing ζ . The result is an increasingly complicated interference pattern between
successive Airy functions as shown in figures 10–12, but usually with a few fringes of an
outlying Airy function visible. The proliferation of caustics for increasing ζ is described only
by dynamical diffraction and lies beyond the phase grating (or so-called ‘RN’) approximation.
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Figure 8. A comparison of the farfield wavefunction obtained by numerical diagonalization (dashed
curve), with the uniform calculation (solid curve), for � = 12 500 and ζ = π/2.

Figure 9. A comparison of the farfield wavefunction obtained by numerical diagonalization (dashed
curve), with the uniform calculation (solid curve), for � = 12 500 and ζ = π .

Figure 10. A comparison of the farfield wavefunction obtained by numerical diagonalization
(dashed curve), with the uniform calculation (solid curve), for � = 12 500 and ζ = 3π/2.

10. The problem of the separatrix

As has been already been noted, when the eigenvalue β approaches 1 the solution to the RN
equation changes its nature. Classically, the motion of a particle in the sinusoidal potential goes
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Figure 11. A comparison of the farfield wavefunction obtained by numerical diagonalization
(dashed curve), with the uniform calculation (solid curve), for � = 12 500 and ζ = 7π/2.

Figure 12. A comparison of the farfield wavefunction obtained by numerical diagonalization
(dashed curve), with the uniform calculation (solid curve), for � = 12 500: ζ = 81π/2.

from being trapped in a single well (libration) to being free (rotation) when its energy passes
through the separatrix at β = 1 from below. At the same time the number of turning-points
of the ‘momentum’ function p1 jumps from 2 to 4 and in so doing p1 becomes qualitatively
different from p2—as apparent from figure 2 when the central dip breaks through the zero line.
These new turning-points occur at

y = ±
√
β − 1. (48)

For small values of � the actual divergences due to these turning-points can fall between
the diffracted orders and go unnoticed. As � is increased this is no longer the case and the
divergences become clearly defined as the classical distribution emerges. It is emphasized
that these divergences only affect those eigenvectors with eigenvalues close to the separatrix.
Careful examination of the picture of the 200th eigenstate (see figure 7) for� = 12 500, reveals
the first hint that the uniform approximation has a defect when β begins to approach 1. The
remainder of this paper is concerned with these eigenstates close to the separatrix. Although
only forming a small fraction of the total eigenstate sum giving the diffracted wavefunction,
they are perhaps the most interesting states as they contain the very fine corrections due to
tunnelling between the coordinate space potential wells in the semiclassical limit.



3912 D H J O’Dell

Figure 13. (a) The original p2, and (b) transformed p̄2, phase momenta for β = 0.95.

The uniform approximation used so far was not designed to handle the new turning-
points. The momentum function p2 used in the mapping relation (40) contains no information
concerning the new turning-points. The amplitude and phase functions no longer act in concert.
One way to proceed is by a transformation upon the RN equation which results in both the
momentum functions have turning-points at y = √

β − 1. Defining

Bn = (−1)nCn (49)

the stationary RN equation (14) becomes

(y2 − β)Cn + 1
2 (Cn+1 + Cn−1) = 0 (50)

from which one obtains an altered action

∂S

∂y
=

√
� arccos [β − y2] + i

(β − y2)y

1 − (β − y2)2
(51)

leading to the WKB formula

C(y) = e±i
√
�
∫

arccos [β−y2] dy(
1 − (y2 − β)2

)1/4 = e±i
√
� S̄0(y,β)(

1 − (y2 − β)2
)1/4 . (52)

The amplitude is the same as before, giving the two sets of turning-points, but the phase
momentum

p̄2(y, β) = arccos [β − y2] (53)

now has its turning-points at y = ±√
β − 1 as promised. The cost is the loss of the turning-

points at y = ±√
β + 1. The effect of the transformation is in swapping the roles of inner and

outer turning-points. Figure 13 shows that whereas p2 has the momentum profile for a well,
p̄2 has that of barrier which the particle has enough energy to surmount.

Since the phase momentum functions p2 and p̄2 only describe one set of turning-points
each, one is forced into employing two separate transitional uniform approximations for each
eigenfunction when one is close to the separatrix. One transitional approximation covers the
inner turning-points and the other the outer. Both are valid in the intermediate region where
they smoothly join.

11. The parabolic barrier equation

The inner turning-points require a transitional approximation for a (smooth) potential barrier.
A suitable comparison equation is

d2φ

dσ 2
+
(
t + σ 2

)
φ = 0. (54)
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For t > 0, the Bloch states are more energetic than the central potential barrier, and classically
one has transmission above the barrier. This is referred to as the underdense case. Making the
change of variables

t = it̄ (55)

σ = σ̄√
2

eiπ/4 (56)

one is lead back to the equation

d2φ

dσ̄ 2
−
(
t̄

2
+
σ̄ 2

4

)
φ = 0 (57)

which is the same as the first (upper sign) parabolic cylinder equation (41) when the
identifications g = σ̄ and a = t̄/2 are made.

The appropriate solutions for the barrier top are not the Whitakker functions since a
parabolic barrier does not give an exponentially decaying wavefunction for large g. Instead,
for a barrier, the basic even and odd power series solutions, which will be referred to as
-1(a, g) and -2(a, g), respectively, are the correct choice. Close to the barrier top a is
small and the power series solutions are most conveniently expressed in terms of the confluent
hypergeometric functions

-1(a, g) = e−g2/4
1F1

(
a

2
+

1

4
; 1

2
; g

2

2

)
(58)

-2(a, g) = ge−g2/4
1F1

(
a

2
+

3

4
; 3

2
; g

2

2

)
. (59)

As discussed previously, the boundary conditions mean that only even eigenfunctions are of
interest here. Thus, the underdense inner turning-point transitional approximation will be
based upon the even power series

-1

(
−i

t

2
,
√

2σe−iπ/4

)
. (60)

12. The action for an underdense barrier

The underdense barrier does not induce any real turning-points (though of course the proximity
of the turning-points to the real axis gives the deviation of the WKB amplitude from the true
value) so the natural choice of reference point from which to integrate the phase is y = σ = 0.
One finds

S̄0(0, y, β) =
∫ y

0
arccos

[
β − y ′2] dy ′ = y arccos

[
β − y2

]
+2i
√

1 − β E

(
1

2
arccos

[
β − y2

]∣∣∣∣ 2

1 − β

)
− E

(
1

2
arccos [β]

∣∣∣∣ 2

1 − β

)
.

(61)

Although it appears that this action contains an imaginary piece this is actually not the case.
Strictly, the well known transformations (see Abramowitz and Stegun (1964)) should be applied
to the elliptic functions so that their parameters lie between zero and one (the parameter used
above tends to infinity as β → 1). When this is done the action S̄0 is explicitly real. However,
the transformations produce more complicated expressions so will not be applied here.
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To find the value of t , which was previously given by the integral across the well, one
must now integrate up the imaginary axis between the points

y± = ±
√
β − 1 = ±i

√
1 − β. (62)

The equivalent points for the underdense barrier comparison equation (54) are

σ = ±i
√
t . (63)

Letting y = iv and σ = iς , t is implicitly given by

2i
√
�

∫ √
1−β

0
arccos

[
β + v2

]
dv = 2i

∫ √
t

0

√
t2 − ς2 dς (64)

which, in a similar to fashion to before, results in the condition

4
√
�
√

1 − βE

(
1

2
arccos [β]

∣∣∣∣ 2

1 − β

)
= tπ

2
. (65)

The mapping function between σ and y implicitly giving σ(y) is

√
�S̄0(0, y, β) =

∫ σ

0

√
t + σ 2 dσ = t

2

(
arccosh

[√
1 +

σ 2

t

]
+

σ√
t

√
1 +

σ 2

t

)
(66)

which, together with the value of t , gives the transitional approximation to the wavefunction

B(y) = (−1)nC(y) = (−1)nψtransitional

∝ (−1)n
(

t + σ 2

1 − (
y2 − β

)2

)1/4

eiσ 2/2
1F1

(
−i

t

4
+

1

4
; 1

2
; −iσ 2

)
. (67)

This is a real function for real t and σ , which is valid from y = 0 and almost all the way
to the outer turning-point, breaking down close to it because it is only set up to deal with
the inner turning-point. The constant of proportionality will now be obtained by matching
the asymptotic behaviour of this function to the WKB solution somewhere between the two
transition points.

13. The asymptotics of the barrier transitional approximation

The confluent hypergeometric function has well known asymptotics. When |σ | is large

1F1

(
−i

t

4
+

1

4
; 1

2
; −iσ 2

)

= �
(

1
2

)
�
(

1
4 + i t4

)e−iπ(−it+1)/4
(− iσ 2

)(it−1)/4
(

1 +
(it2 − 4t − 3i)

16σ 2
+ O

(
1

σ 4

))

+
�
(

1
2

)
�
(

1
4 − i t4

)e−iσ 2(− iσ 2
)−(it+1)/4

(
1 +

(−it2 − 4t + 3i)

16σ 2
+ O

(
1

σ 4

))
(68)

where � is the gamma (factorial) function. So

-1

(
−i

t

2
,
√

2σe−iπ/4

)
= eiσ 2/2

1F1

(
−i

t

4
+

1

4
; 1

2
; −iσ 2

)

∼ �

(
1

2

) (− iσ 2
)−1/4

(
e−π(t+i)/4eiσ 2/2

(−iσ 2
)it/4

�
(

1
4 + i t4

)eln[1+(it2−4t−3i)/(16σ 2)]

+e−iσ 2/2

(−iσ 2
)−it/4

�
(

1
4 − i t4

) eln[1−(it2+4t−3i)/(16σ 2)]
)

(69)
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which conveniently reduces to

-1

(
−i

t

2
,
√

2σe−iπ/4

)
∼2

�
(

1
2

)
∣∣� ( 1

4 + i t4
)∣∣σ−1/2e−πt/8−t/(4σ 2)

× cos

(
t

2
ln σ +

σ 2

2
− Arg

[
�

(
1

4
+ i

t

4

)]
− π

8
+ O

(
1

σ 4

))
. (70)

When � is large enough σ quickly takes on large values for even modest sizes of y, and so
the confluent hypergeometric function attains its asymptotic form in the region between the
inner and outer turning-points. It may then be compared to the WKB solution (52) for the
transformed RN equation. The left and right travelling WKB waves (52) are combined to give
a real solution

Bbarrier(y) = N(
1 − (

y2 − β
)2
)1/4 cos

(√
�S̄0(0, y, β) + µ(β) +

√
�πy

)
(71)

where the (−1)n factor has been incorporated into the phase of the cosine as
√
�πy. To enable

a direct comparison, the phase of the cosine of equation (70) should also be augmented by the
same quantity. The real phase angle µ(β) for this parabolic barrier approximation (which for
a simple first-order turning-point, due to a linear potential, is equal to π/4) will this time be
determined by consistency with the asymptotic solution (70). In order for a comparison to be
made, the action S̄0(0, y, β) appearing in the WKB solution must be written in terms of (σ, t),
which is accomplished through equation (66). Expanding the rhs of (66) for σ � t , one has

t

2

(
arccosh

[√
1 +

σ 2

t

]
+

σ√
t

√
1 +

σ 2

t

)
∼ t

2
ln σ − t

4
ln t +

t

2
ln 2 +

σ 2

2
+
t

4
+ O

(
t2

σ 2

)
(72)

implying that

µ = t

4
ln t − t

2
ln 2 − t

4
− Arg

[
�

(
1

4
+ i

t

4

)]
− π

8
. (73)

Figure 14 demonstrates that this expression for µ is correct by comparing the WKB
solution (71) containing it, with the fully numerical calculation. The value of � is reasonably
small so the WKB solution diverges only very slightly from the correct value.

The exact solution to the parabolic cylinder equation has thus contributed to the evaluation
of the phase of the WKB solution. On the other hand, the WKB solution indicates the necessary
modifications needed for the amplitude of the parabolic cylinder equation so that it becomes the
correct transitional solution to the particular problem being dealt with. Equating the amplitudes
of equations (70) and (71), one finds equation (67) can now be updated to read

Bbarrier(y) = (−1)nN
∣∣� ( 1

4 + i t4
)∣∣ eπt/8

2�
(

1
2

)
×
(

t + σ 2

1 − (
y2 − β

)2

)1/4

eiσ 2/2
1F1

(
−i

t

4
+

1

4
; 1

2
; −iσ 2

)
. (74)

The parabolic transitional approximation is compared to the fully numerical result in
figure 15(a). At first sight the match does not seem too good. The reason is that the
normalization uses the WKB amplitude factor, which diverges at the turning-points. When
there are only the outer turning-points this method seems to work (see figures 3–6) since the
divergences are narrow enough to not produce too significant a contribution. However, the
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Figure 14. The WKB approximation using the underdense parabolic barrier action, see
equation (71), and the fully numerical solution. In particular, this tests the derived phase angle µ

as given by (73). The dots are the numerically calculated points, and the continuous curve joins
the WKB amplitudes. The value of � is 12 500 and β = 0.9961.

appearance of the inner-turning-point divergences close to the separatrix energy now means the
normalization factor is significantly over estimating the magnitude of the wavefunction, and
thus reduces the magnitude too much as shown. With relatively little effort one can numerically
normalize the uniformly calculated eigenvectors by summing the discrete amplitudes, and when
this is carried out the match, shown in figure 15(b), is exceedingly good. This illustrates that it
is only the normalizing factor which is at fault. Figure 15(b) further illustrates that the barrier
transitional approximation, equation (74), is correct nearly throughout the entire momentum
range—only breaking down close to the outer turning-point.

14. Calculation of the eigenvalues close to the separatrix—a modified
Bohr–Sommerfeld rule

There is a slight complication to the calculation of the allowed values ofβ close to the separatrix
which needs to be highlighted. When comparing the values of β obtained by the numerical
diagonalization technique with those obtained via equation (30), the two differ when β grows
very close to 1. Somehow the derivation of the basic WKB solution (21) has failed to capture
the full behaviour of thep2 function—perhaps it should now afterall contain two turning-points,
not one, and so match the structure of the amplitudep1 term? (Implying the transformation (49)
of the phase momentum is more than a device.) From the point of view of the eigenvectors this
can be overcome by replacing the previous single uniform approximation with two transitional
approximations when β approaches 1; the parabolic transitional approximation to cover the
inner turning-point, and an Airy function approximation for the outer turning-point (since
this remains a simple first-order turning-point). However, to calculate the allowed values of
the action which corresponds to the bound states, one needs some expression which is valid
throughout the entire region which joins the two turning-points.

The general procedure for finding the action across a classically allowed region which
separates two arbitrary types of turning-point employs two transitional approximations which
are each valid at one end of the region, but these must be correctly joined. The quantized
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Figure 15. The parabolic barrier transitional approximation: (a) as given by equation (74); (b) the
renormalized version. The dots are the fully numerical solution. The value of � is 12 500 and
β = 0.9961.

values of S, and hence β, are those which correctly match the two somewhere in the region of
mutual validity.

The matching is most easily accomplished using the asymptotic forms for the two
transitional approximations—which are of course their WKB approximations. In the region
between the two turning-points one thus has

1(
1 − (

y2 − β
)2
)1/4 cos

(√
�S̄0(0, y, β) + µ(β) +

√
�πy

)

= 1(
1 − (

y2 − β
)2
)1/4 cos

(√
�S0(

√
1 + β, y, β) +

π

4

)
(75)

which implies that
√
�S̄0(0, y, β) + µ(β) +

√
�πy =

√
�S0

(√
1 + β, y, β

)
+
π

4
(76)

modulo 2π .
The method described above works in conventional situations with WKB expressions

developed from (continuous) differential equations. Once again, however, the approach has
to be modified for the RN equation—whilst successful for the single well, as soon as the
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Table 1. The bound eigenvalues near the separatrix: comparison of numerical result with the
standard Bohr–Sommerfeld condition for a well (30), and the modified conditions (77), (78).

� j Fully numerical Single well calc. Modified calc.

12 500 200 0.996 129 0.996 824 0.996 131
198 0.987 197 0.987 337 0.987 199
196 0.976 711 0.976 759 0.976 713
194 0.965 430 0.965 461 0.965 432
192 0.953 575 0.953 599 0.953 578
190 0.941 244 0.941 264 0.941 247
188 0.928 498 0.928 515 0.928 499
186 0.915 379 0.915 394 0.915 381

250 000 900 0.999 954 — 0.999 954

inner turning-points begin to approach the real axis even the matching of the two transitional
approximations runs into trouble. The reason is that the continuous descriptions embodied
above by equation (75) do not match at all. Only when they are evaluated at the discrete points
corresponding to diffracted beams do they match. The transformation (49) has produced two
different equations whose continuized WKB expressions only respect their common origin at
the discrete level. It is then a surprise to find that at the correct (characteristic) values of β the
discretely evaluated expressions on either side of equation (75) are in perfect agreement for
all y. Both are identical in each other’s supposedly exclusive region of validity. This is rather
curious, but the characteristic values of β, which one is able to predict by correctly matching
the discrete points of the two WKB expressions, demonstrate that it is correct.

Due to the simultaneous validity for all y, the most sensible point to choose to match the
two solutions is y = 0. The correct matching condition for even eigenstates becomes one of

cos (µ(β)) − cos
(√

�S0(y+, 0, β) + π/4
) = 0 (77)

cos (µ(β)) − cos
(√

�S0(y+, 0, β) + 5π/4
) = 0 (78)

the choice depending on whether the terminating Airy function has its peak above or below
the y-axis. In fact, successive even eigenstates alternate between the two conditions. When
using (77) and (78), it is necessary to express µ, which is in the first instance a function
of t , see equation (73), as a function of β through the definition of t (equation (65)). A
further subtlety concerning the use of (77) and (78) is that close to each of the characteristic
values there is another zero which does not correspond to an eigenvalue. The correct zeros
are those through which the lhs of equations (77) and (78) have negative gradients. Table 1
compares the values of the top eight bound eigenvalues for � = 12 500 as calculated by the
different methods which have been outlined so far. Clearly the modified method gives excellent
agreement with the true value and is superior to the regular Bohr–Sommerfeld scheme when
close to the separatrix. The remaining error between the modified method and the true value
becomes smaller as � → ∞. This is further emphasized by the last entry on the table which
is the last bound eigenvalue for � = 250 000. The Bohr–Sommerfeld method predicts only
898 even bound states whereas the modified method accurately finds the value of the 900th.
The subtle behaviour of the eigenvalues near the separatrix can be physically attributed to
the (semiclassically) exponentially small corrections due to wavefunction tunnelling. This
phenomena has been discussed both for the Mathieu equation and more general periodic
potentials by Connor et al (1984) and more recently in related contexts by Waalkens et al
(1997) and by Sieber (1997).
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15. The Airy transitional approximation

As has already been pointed out, to obtain the complete wavefunction correct for all y one
must join the parabolic barrier approximation (74) to another transitional approximation which
covers the outer, first-order, turning-point. The comparison equation is given as an example
in the appendix (equation (109)), and choosing the reference point as y = y+ = √

1 + β, the
mapping function σ(y) is given by

√
�S0(y+, y, β) =

{− 2
3 |σ |3/2 if y �

√
1 + β (σ < 0)

2
3 iσ 3/2 if y >

√
1 + β (σ > 0)

(79)

since the expression given for S0, equation (24), is positive imaginary when y > y+, and
negative real when y < y+.

The well known asymptotics of Ai(σ ) when σ � 0 are

Ai(σ ) ∼ 1

2π
σ−1/4 e− 2

3 σ
3/2

(80)

and so the Airy transitional approximation becomes

ψtransitional = BAiry(y) = 2πN
(

σ(y)

1 − (
y2 − β

)2

)1/4

Ai (σ (y)) . (81)

16. The free eigenstates

As emphasized previously, ‘free’ is a description which refers to the (actual) configuration
space situation of states having transverse energies greater than V0. In (actual) momentum
space there are no free states, the classical bounding of the maximum being set by the initial
transverse momentum plus whatever the atoms can extract from the potential—which depends
on the (actual) configuration space point, but has a maximum of

√
2mV0. Thus, even for

β > 1, one expects caustics in (actual) momentum space. One sees why the free eigenstates
are quantized and not continuous in energy. Somewhat perversely, the states which are free in
(actual) configuration space, sit in a double well in (actual) momentum space, and so the central
barrier is now overdense—meaning that classical transmission is forbidden. For perpendicular
incidence, the free ‘states’ are classically inaccessible, so their contribution to the eigensum
of states forming the total wavefunction is exponentially small.

For states with β � 1, the problem is most easily solved using the WKB technique in
(actual) configuration space, since there are no turning-points to contend with. Constraining
the discussion to perpendicular incidence means, however, that only those states with β a little
greater than 1 need be calculated, so the ‘close to the separatrix’ treatment of the preceding
sections must be generalized to encompass β > 1. Since the essentials of the application of
the uniform method to the RN equation have already been conveyed, the following treatment
is intended to be more of a ‘recipe’ than a detailed account.

The overdense barrier equation will be taken as

d2φ

dσ 2
+
(
σ 2 − t

)
φ = 0 (82)

with t a positive quantity. The connection with the parabolic cylinder equation (41) is made
with the aid of the transformations

a = −i
t

2
(83)

g =
√

2σeiπ/4. (84)
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To remove any ambiguity regarding the phase momentum function p2 for the barrier, it will
be written as

p̄2 = arccos
[
β − y2

] =
{

i arccosh
[
β − y2

]
if 0 � y �

√
β − 1

π − arccos
[
y2 − β

]
if

√
β − 1 � y <

√
1 + β

(85)

where the central barrier lies between ±√
β − 1. The actions generated from these momenta,

using y = √
β − 1 as the reference point, are

S̄
y<

√
β−1

0

(√
β − 1, y, β

)
= i

(
y arccosh

[
β − y2

]
+2i
√
β − 1E

(
1

2
arccos

[
β − y2

]∣∣∣∣ 2

1 − β

))
(86)

and

S̄
y>

√
β−1

0

(√
β − 1, y, β

)
= πy + 2

√
β + 1E

(
1

2
arccos

[
y2 − β

]∣∣∣∣ 2

1 + β

)

−2
√
β + 1E

(
π

2

∣∣∣ 2

1 + β

)
− y arccos

[
y2 − β

]
. (87)

As before, the comparison equation (82) gives rise to the mapping function by setting

S̄
y<

√
β−1

0 =
∫ σ

√
t

√
σ 2 − t dσ = i

t

2

(
arcsin

[
σ√
t

]
+

σ√
t

√
1 − σ 2

t
− π

2

)
(88)

and

S̄
y>

√
β−1

0 =
∫ σ

√
t

√
σ 2 − t dσ = t

2

(
σ 2

t

√
1 − t

σ 2
− arccosh

[
σ√
t

])
. (89)

In particular, the ‘barrier integral’ which fixes the value of t once β is known, can this time be
conducted along the real axis, and gives, using (86) and (88)

2i
√
�
√
β − 1E

(
1

2
arccos [β]

∣∣∣∣ 2

1 − β

)
= − tπ

4
. (90)

The correct solution to the barrier equation is still the even power series

-1(a, g) = -1

(
−i

t

2
,
√

2σeiπ/4

)
(91)

and so the transitional approximation for the overdense barrier becomes

B(y) = (−1)nC(y) = (−1)nψtransitional

∝ (−1)n
(

σ 2 − t

1 − (
y2 − β

)2

)1/4

e−iσ 2/2
1F1

(
−i

t

4
+

1

4
; 1

2
; iσ 2

)
. (92)

17. Asymptotic matching to the overdense WKB expression

The transitional wavefunction differs by a few sign changes from the underdense case, and for
large σ these produce the modified oscillatory behaviour

-1

(
−i

t

2
,
√

2σeiπ/4

)
∼ 2

�
(

1
2

)
∣∣� ( 1

4 + i t4
)∣∣σ−1/2eπt/8−t/(4σ 2)

× cos

(
t

2
ln σ − σ 2

2
− Arg

[
�

(
1

4
+ i

t

4

)]
+
π

8
+ O

(
1

σ 4

))
. (93)
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Expanding the rhs of equation (89) for σ � t gives

t

2

(
σ 2

t

√
1 − t

σ 2
− arccosh

[
σ√
t

])
∼ − t

2
ln σ +

t

4
ln t − t

2
ln 2 +

σ 2

2
− t

4
(94)

from which one deduces the unknown phase angle µ, appearing in the WKB approximation
for the overdense barrier (see equation (71)), to be

µ = − t

4
ln t +

t

2
ln 2 +

t

4
+ Arg

[
�

(
1

4
+ i

t

4

)]
− π

8
. (95)

18. The overdense eigenvalues

Once again µ can be successfully employed in the accurate determination of the eigenvalues
β. Following the empirical observations from the underdense case, the WKB expression
emanating from the outer turning-point and that from the inner turning-point are matched at
a point y corresponding to one of the beams. This time the choice of y = 0 is not available
since only the phase for the WKB approximation outside the barrier is known. The next most
obvious choice is either the inner or outer turning-point since there the phase of the WKB
expressions are simplest, but in general these classically determined points will not fall on a
diffracted beam. Selecting a random beam, y = m/

√
�, with m an integer, giving of value y

lying between the two turning-points, will suffice. The condition giving the permitted values
of β for even eigenstates then alternates between

cos

(√
�S̄

y>
√
β−1

0

(√
β − 1,

m√
�
,β

)
+ µ(β) +

√
�π

m√
�

)

− cos

(√
�S0

(√
1 + β,

m√
�
,β

)
+
π

4

)
= 0 (96)

and

cos

(√
�S̄

y>
√
β−1

0

(√
β − 1,

m√
�
,β

)
+ µ(β) +

√
�π

m√
�

)

− cos

(√
�S0

(√
1 + β,

m√
�
,β

)
+

5π

4

)
= 0. (97)

Both of these equations have zeros which do not correspond to the eigenvalues, the correct
ones being those for which gradient of the lhs are positive (this is the opposite of the
underdense case). As before, the accuracy which is achieved gives confidence to the
method: for � = 12 500 the first two free eigenvalues given by numerical diagonalization
are β = 1.003 356 and β = 1.012 155, for which this WKB matching technique gives
β = 1.003 358 and β = 1.012 156, respectively.

19. The overdense eigenvectors

Knowing the value of β, one is in a position to calculate the transitional approximation to the
overdense eigenvector

Bbarrier(y) = (−1)nN
∣∣� ( 1

4 + i t4
)∣∣ e−πt/8

2�
(

1
2

)
×
(

σ 2 − t

1 − (
y2 − β

)2

)1/4

e−iσ 2/2
1F1

(
−i

t

4
+

1

4
; 1

2
; iσ 2

)
. (98)
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Figure 16. The 201st Bloch wave, which is the first ‘free’ eigenvector. This requires both the
overdense parabolic barrier solution, and an Airy function as transitional approximations. The two
are joined at the 83rd diffracted beam, which is at y = 0.742. The dots are the purely numerical
calculation.

The Airy function approximation for the outer turning-point remains the same as before.
Figure 16 shows the first free eigenvector made up of the overdense barrier and Airy function
approximations.

20. Conclusion

The diffraction of a plane wave by a sinusoidal potential is conveniently described by the
RN equation (Mathieu equation in Fourier space). A method for calculating the eigenvalues
(characteristic values) and continuized eigenvectors of this differential difference equation
in the short wavelength limit is given. Working in Fourier space circumvents some of the
difficulties associated with the infinite number of turning-points inherent in a periodic potential.

WKB-type solutions to the RN equation serve as a starting point. Eigenvalues then
follow from a simple Bohr–Sommerfeld relation. Whilst the WKB solutions to the RN
equation still contain divergences, they reveal that the RN equation can be interpreted as
describing a wave in a double-well potential, for which simple uniform approximations—
solutions without singularities—exist in terms of the parabolic cylinder functions. There are
three situations. Firstly, the ‘bound’ eigenstates lying below the separatrix in coordinate
space lie above the central barrier in the double well in Fourier space and so a single
uniform approximation in terms of Hermite polynomials suffices. Secondly, at or just below
the coordinate space separatrix the eigenstates lie at or just above the central barrier in
the double well in Fourier space, causing two new turning-points to appear. A complete
eigenfunction with no singularities can be constructed by smoothly sewing together two
transitional approximations—a parabolic cylinder function and an Airy function (the double
well in Fourier space is symmetrical so only two transitional approximations are required
rather than three). Thirdly, above the coordinate space separatrix and consequently below the
central barrier in Fourier space, the ‘free’ eigenstates are also given by matching a parabolic
cylinder function and an Airy function. A perscription is given for the modification of the
Bohr–Sommerfeld rule for the eigenvalues near the separatrix.
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When considering the diffraction of waves by a sinusoidal potential, knowing the
eigenfunctions of the potential allows one to propagate the incident wave for any interaction
distance and hence investigate dynamical diffraction phenomena which go beyond the
phase grating/RN approximation, such as caustics (natural focussing). Semiclassically, the
superposition of eigenfunctions giving the diffraction pattern due to an incident plane wave
only contains an exponentially small contribution from the free eigenstates. However, as
h̄ → 0 (� → ∞), even the number of ‘bound’ states becomes infinite. In a companion
paper (O’Dell 2001) it will be demonstrated that a Poisson resummation of the eigenfunction
superposition produces a new series each term of which is associated with classical paths
belonging to a different topological class. Furthermore, the number of terms required in this
new sum depends linearly on the distance propagated through the potential (independent of the
size of h̄)—only a finite number of terms are required for finite propagation distances, and so is
computationally superior to the original eigenfunction sum which requires an infinite number
of terms in the h̄ → 0 limit.
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Appendix. The method of uniform approximation

Details can be found in the review by Berry and Mount (1972). The objective is to obtain an
approximate solution of the Helmholtz equation

d2ψ(q)

dq2
+ χ(q)ψ(q) = 0 (99)

in terms of solutions to one of the ‘studied’ equations, which will be written

d2φ(σ)

dσ 2
+ �(σ)φ(σ ) = 0. (100)

The choice of studied equation is determined by �(σ) (not the gamma function) being in some
way similar to χ(q). This similarity implies that φ(σ) also resembles the wavefunction ψ(q),
and ‘can be changed into it by stretching or contracting it a little and changing the amplitude
a little’. And so ψ(q) will be expressed in terms of φ(σ)

ψ(q) = f (q)φ(σ (q)). (101)

Substitution of this definition into (99) and making use of (100) leaves

d2f

dq2
+ χfφ − f

(
dσ

dq

)2

�φ +
dφ

dσ

(
2

df

dq

dσ

dq
+ f

d2σ

dq2

)
= 0. (102)

The amplitude f (q) is as yet unspecified, so it is chosen to simplify (102) as much as possible.
Putting

f =
(

dσ

dq

)− 1
2

(103)

renders (102) into an equation purely for the ‘mapping function’ σ(q)

χ =
(

dσ

dq

)2

� −
(

dσ

dq

)1
2 d2

dq2

(
dσ

dq

)− 1
2

(104)
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which, when solved, gives σ as a function of q. If a good choice of comparison function �(σ)

has been made, then σ(q) will be a slowly varying function and the second term on the rhs
of (102) will be much smaller than the first. Clearly the criterion for this to be the case is

ε(q) ≡
∣∣∣∣∣ 1

χ(q)

(
dσ

dq

)1
2 d2

dq2

(
dσ

dq

)− 1
2

∣∣∣∣∣ � 1. (105)

When this is satisfied, the mapping relation reduces to

dσ

dq
�
(
χ(q)

�(σ)

)1
2

(106)

which through definition (103) also gives the amplitude f . Thus, by picking two points σ0 and
q0 which are ‘equivalent’, one finds σ(q) from∫ σ

σ0

√
±�(σ) dσ =

∫ q

q0

√
±χ(q) dq (107)

where the + or the − version can be chosen depending on the situation. The approximate
solution to (99) is then

ψ(q) �
(
� (σ(q))

χ(q)

) 1
4

φ (σ(q)) . (108)

In order for the comparison method to be viable, the mapping from q to σ must be one to
one, which requires that dσ/dq is never zero or infinite. Examining (106) this means that χ
and � must not diverge—which is assumed to be the case—and more relevantly, their zeros
must be made to correspond. The zeros are of course the turning-points, and so, as Berry and
Mount emphasize, ‘in the semiclassical limit all problems are equivalent which have the same
classical turning-point structure’.

Perhaps the best known example of the uniform approximation is for the lone, first-order
(that is, the potential is locally linear) turning-point leading to the comparison equation

d2σ

dσ 2
− σφ = 0 (109)

whose solution is the Airy function, Ai(σ ). Many potentials of interest are linear close to the
turning-point. As one moves away from the turning-point the Airy function can be smoothly
matched onto a WKB solution which is capable of handling very complicated potentials
provided there are no turning-points. Used in this way, as a patch across the turning point, the
Airy function constitutes what is sometimes referred to as a transitional approximation.
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